The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
This work is concerned with discrete-time zero-sum games with Markov transitions on a denumerable space. At each decision time player II can stop the system paying a terminal reward to player I, or can let the system to continue its evolution. If the system is not halted, player I selects an action which affects the transitions and receives a running reward from player II. Assuming the existence of an absorbing state which is accessible from any other state, the performance of a pair of decision...
Download Results (CSV)