Symmetric squares of elliptic curves: rational points and Steiner groups.
Watkins has conjectured that if is the rank of the group of rational points of an elliptic curve over the rationals, then divides the modular parametrisation degree. We show, for a certain class of , chosen to make things as easy as possible, that this divisibility would follow from the statement that a certain -adic deformation ring is isomorphic to a certain Hecke ring, and is a complete intersection. However, we show also that the method developed by Taylor, Wiles and others, to prove...
Page 1