The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Monoid presentations of groups by finite special string-rewriting systems

Duncan W. ParkesV. Yu. ShavrukovRichard M. Thomas — 2004

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

We show that the class of groups which have monoid presentations by means of finite special [ λ ] -confluent string-rewriting systems strictly contains the class of plain groups (the groups which are free products of a finitely generated free group and finitely many finite groups), and that any group which has an infinite cyclic central subgroup can be presented by such a string-rewriting system if and only if it is the direct product of an infinite cyclic group and a finite cyclic group.

Monoid presentations of groups by finite special string-rewriting systems

Duncan W. ParkesV. Yu. ShavrukovRichard M. Thomas — 2010

RAIRO - Theoretical Informatics and Applications

We show that the class of groups which have monoid presentations by means of finite special [λ]-confluent string-rewriting systems strictly contains the class of plain groups (the groups which are free products of a finitely generated free group and finitely many finite groups), and that any group which has an infinite cyclic central subgroup can be presented by such a string-rewriting system if and only if it is the direct product of an infinite cyclic group and a finite cyclic group.

Page 1

Download Results (CSV)