The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A topological algebra A is said to be fundamental if there exists b > 1 such that for every sequence (xn) in A, (xn) is Cauchy whenever the sequence bn(xn − xn-1) tends to zero as n → ∞. Let A be a complex unital fundamental F-algebra with bounded elements such that A* separates the points on A. Then we prove that the spectrum σ(a) of every element a ∈ A is nonempty compact. Moreover, if A is a division algebra, then A is isomorphic to the complex numbers ℂ. This result is a generalization of...
Download Results (CSV)