The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We consider singular perturbation variational problems depending on a small parameter . The right hand side is such that the energy does not remain bounded as . The asymptotic behavior involves internal layers where most of the energy concentrates. Three examples are addressed, with limits elliptic, parabolic and hyperbolic respectively, whereas the problems with are elliptic. In the parabolic and hyperbolic cases, the propagation of singularities appear as an integral property after integrating...
We consider the variational formulation of the problem of elastic shells in the membrane approximation, when the medium surface is hyperbolic. It appears that the corresponding bilinear form behaves as some kind of two-dimensional elasticity without shear rigidity. This amounts to saying that the membrane behaves rather as a net made of elastic strings disposed along the asymptotic curves of the surface than as an elastic two-dimensional medium. The mathematical and physical reasons of this behavior...
We consider singular perturbation variational problems
depending on a small parameter ε. The right hand side is such
that the energy
does not remain bounded as ε → 0. The asymptotic
behavior involves internal
layers where most of the energy concentrates. Three examples are addressed,
with limits elliptic, parabolic and hyperbolic respectively, whereas the
problems with ε > 0 are elliptic. In the parabolic and hyperbolic
cases, the
propagation of singularities appear as an integral property after...
Download Results (CSV)