The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let be a commutative ring with nonzero identity, let be the set of all ideals of and an expansion of ideals of defined by . We introduce the concept of -primary ideals in commutative rings. A proper ideal of is called a -primary ideal if whenever and , then or . Our purpose is to extend the concept of -ideals to -primary ideals of commutative rings. Then we investigate the basic properties of -primary ideals and also discuss the relations among -primary, -primary and...
Let be a commutative ring with identity. A proper ideal is said to be an -ideal of if for , and imply . We give a new generalization of the concept of -ideals by defining a proper ideal of to be a semi -ideal if whenever is such that , then or . We give some examples of semi -ideal and investigate semi -ideals under various contexts of constructions such as direct products, homomorphic images and localizations. We present various characterizations of this new class of...
Download Results (CSV)