An alternative construction of normal numbers
A new class of -adic normal numbers is built recursively by using Eulerian paths in a sequence of de Bruijn digraphs. In this recursion, a path is constructed as an extension of the previous one, in such way that the -adic block determined by the path contains the maximal number of different -adic subblocks of consecutive lengths in the most compact arrangement. Any source of redundancy is avoided at every step. Our recursive construction is an alternative to the several well-known concatenative...