Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

A reconstruction theorem for locally moving groups acting on completely metrizable spaces

Edmund Ben-Ami — 2010

Fundamenta Mathematicae

Let G be a group which acts by homeomorphisms on a metric space X. We say the action of G is locally moving on X if for every open U ⊆ X there is a g ∈ G such that g↾X ≠ Id while g↾(X∖U) = Id. We prove the following theorem: Theorem A. Let X,Y be completely metrizable spaces and let G be a group which acts on X and Y with locally moving actions. If the orbits of the action of G on X are of the second category in X and the orbits of the action of G on Y are of the second category...

Page 1

Download Results (CSV)