The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let G be a graph and C be a set of cycles of G. The tree graph of G defined by C, is the graph T(G,C) that has one vertex for each spanning tree of G, in which two trees T and T' are adjacent if their symmetric difference consists of two edges and the unique cycle contained in T ∪ T' is an element of C. We give a necessary and sufficient condition for this graph to be connected for the case where every edge of G belongs to at most two cycles in C.
If G is a minimally 3-connected graph and C is a double cover of the set of edges of G by irreducible walks, then |E(G)| ≥ 2| C| - 2.
A set of vertices D of a graph G is a distance 2-dominating set of G if the distance between each vertex u ∊ (V (G) − D) and D is at most two. Let γ2(G) denote the size of a smallest distance 2-dominating set of G. For any permutation π of the vertex set of G, the prism of G with respect to π is the graph πG obtained from G and a copy G′ of G by joining u ∊ V(G) with v′ ∊ V(G′) if and only if v′ = π(u). If γ2(πG) = γ2(G) for any permutation π of V(G), then G is called a universal γ2-fixer. In this...
Download Results (CSV)