Extension of Whitney Fields from Subanalytic Sets.
Neither real analytic sets nor the images of real or complex analytic mappings are, in general, coherent. Let be a morphism of real analytic spaces, and let be a homomorphism of coherent modules over the induced ring homomorphism . We conjecture that, despite the failure of coherence, certain natural discrete invariants of the modules of formal relations , , are upper semi-continuous in the analytic Zariski topology of . We prove semicontinuity in many cases (e.g. in the algebraic category)....
This is a sequel to “Relations among analytic functions I”, , , fasc. 1, [pp. 187-239]. We reduce to semicontinuity of local invariants the problem of finding solutions to systems of equations involving division and composition by analytic functions. We prove semicontinuity in several general cases : in the algebraic category, for “regular” mappings, and for module homomorphisms over a finite mapping.
Page 1