The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

Relations among analytic functions. I

Edward BierstoneP. D. Milman — 1987

Annales de l'institut Fourier

Neither real analytic sets nor the images of real or complex analytic mappings are, in general, coherent. Let Φ : X Y be a morphism of real analytic spaces, and let Ψ : 𝒢 be a homomorphism of coherent modules over the induced ring homomorphism Φ * : 𝒪 Y 𝒪 X . We conjecture that, despite the failure of coherence, certain natural discrete invariants of the modules of formal relations a = Ker Ψ ^ a , a X , are upper semi-continuous in the analytic Zariski topology of X . We prove semicontinuity in many cases (e.g. in the algebraic category)....

Relations among analytic functions. II

Edward BierstoneP. D. Milman — 1987

Annales de l'institut Fourier

This is a sequel to “Relations among analytic functions I”, , , fasc. 1, [pp. 187-239]. We reduce to semicontinuity of local invariants the problem of finding 𝒞 solutions to systems of equations involving division and composition by analytic functions. We prove semicontinuity in several general cases : in the algebraic category, for “regular” mappings, and for module homomorphisms over a finite mapping.

Page 1

Download Results (CSV)