The aim of this paper is to present some new and essential facts about group 𝒢 generated by the family of convergent permutations, i.e. the permutations on ℕ preserving the convergence of series of real terms. We prove that there exist permutations preserving the sum of series which do not belong to 𝒢. Additionally, we show that there exists a family G (possessing the cardinality equal to continuum) of groups of permutations on ℕ such that each one of these groups is different than 𝒢 and is composed...
The aim of the paper is to present the binomial transformation formulae of Fibonacci numbers scaled by complex multipliers. Many of these new and nontrivial relations follow from the fundamental properties of the so-called delta-Fibonacci numbers defined by Wituła and Słota. The paper contains some original relations connecting the values of delta-Fibonacci numbers with the respective values of Chebyshev polynomials of the first and second kind.
In the paper a new combinatorical interpretation of the Jordan numbers is presented. Binomial type formulae connecting both kinds of numbers mentioned in the title are given. The decomposition of the product of polynomial of variable n into the sums of kth powers of consecutive integers from 1 to n is also studied.
Download Results (CSV)