The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We prove that the set of all Krasinkiewicz maps from a compact metric space to a polyhedron (or a 1-dimensional locally connected continuum, or an n-dimensional Menger manifold, n ≥ 1) is a dense -subset of the space of all maps. We also investigate the existence of surjective Krasinkiewicz maps from continua to polyhedra.
We characterize Peano continua using Bing-Krasinkiewicz-Lelek maps. Also we deal with some topics on Whitney preserving maps.
We prove the following results.
(i) Let X be a continuum such that X contains a dense arc component and let D be a dendrite with a closed set of branch points. If f:X → D is a Whitney preserving map, then f is a homeomorphism.
(ii) For each dendrite D' with a dense set of branch points there exist a continuum X' containing a dense arc component and a Whitney preserving map f':X' → D' such that f' is not a homeomorphism.
The first author has recently proved that if f: X → Y is a k-dimensional map between compacta and Y is p-dimensional (0 ≤ k, p < ∞), then for each 0 ≤ i ≤ p + k, the set of maps g in the space such that the diagonal product is an (i+1)-to-1 map is a dense -subset of . In this paper, we prove that if f: X → Y is as above and (j = 1,..., k) are superdendrites, then the set of maps h in such that is (i+1)-to-1 is a dense -subset of for each 0 ≤ i ≤ p.
In [7], M. Levin proved that the set of all Bing maps of a compact metric space to the unit interval is a dense -subset of the space of all maps. In [6], J. Krasinkiewicz independently proved that the set of all Bing maps of a compact metric space to an n-dimensional manifold (n ≥ 1) is a dense -subset of the space of maps. In [9], J. Song and E. D. Tymchatyn, solving some problems of J. Krasinkiewicz ([6]), proved that the set of all Bing maps of a compact metric space to a nondegenerate connected...
Download Results (CSV)