Initial problems for nonlinear hyperbolic functional differential systems are considered. Classical solutions are approximated by solutions of suitable quasilinear systems of difference functional equations. The numerical methods used are difference schemes which are implicit with respect to the time variable. Theorems on convergence of difference schemes and error estimates of approximate solutions are presented. The proof of the stability is based on a comparison technique with nonlinear estimates...
A generalized Cauchy problem for hyperbolic functional differential systems is considered. The initial problem is transformed into a system of functional integral equations. The existence of solutions of this system is proved by using the method of successive approximations. Differentiability of solutions with respect to initial functions is proved. It is important that functional differential systems considered in this paper do not satisfy the Volterra condition.
A theorem on the existence of weak solutions of the Cauchy problem for first order functional differential equations defined on the Haar pyramid is proved. The initial problem is transformed into a system of functional integral equations for the unknown function and for its partial derivatives with respect to spatial variables. The method of bicharacteristics and integral inequalities are applied. Differential equations with deviated variables and differential integral equations can be obtained...
Download Results (CSV)