The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We study boundedness in Orlicz norms of convolution operators with integrable kernels satisfying a generalized Lipschitz condition with respect to normal quasi-distances of ℝⁿ and continuity moduli given by growth functions.
We obtain sharp power-weighted , weak type and restricted weak type inequalities for the heat and Poisson integral maximal operators, Riesz transform and a Littlewood-Paley type square function, emerging naturally in the harmonic analysis related to Bessel operators.
We characterize the class of weights, invariant under dilations, for which a modified fractional integral operator maps weak weighted Orlicz spaces into appropriate weighted versions of the spaces , where . This generalizes known results about boundedness of from weak into Lipschitz spaces for and from weak into . It turns out that the class of weights corresponding to acting on weak for of lower type equal or greater than , is the same as the one solving the problem for weak...
Download Results (CSV)