The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We show that any finite 2-group, whose abelianization has either 4-rank at most 2 or 8-rank 0 and whose commutator subgroup is generated by two elements, is metabelian. We also prove that the minimal order of any 2-group with nonabelian commutator subgroup of 2-rank 2 is .
Download Results (CSV)