The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 8 of 8

Showing per page

Order by Relevance | Title | Year of publication

On the approximation of real continuous functions by series of solutions of a single system of partial differential equations

Carsten Elsner — 2006

Colloquium Mathematicae

We prove the existence of an effectively computable integer polynomial P(x,t₀,...,t₅) having the following property. Every continuous function f : s can be approximated with arbitrary accuracy by an infinite sum r = 1 H r ( x , . . . , x s ) C ( s ) of analytic functions H r , each solving the same system of universal partial differential equations, namely P ( x σ ; H r , H r / x σ , . . . , H r / x σ ) = 0 (σ = 1,..., s).

Approximation of values of hypergeometric functions by restricted rationals

Carsten ElsnerTakao KomatsuIekata Shiokawa — 2007

Journal de Théorie des Nombres de Bordeaux

We compute upper and lower bounds for the approximation of hyperbolic functions at points 1 / s ( s = 1 , 2 , ) by rationals x / y , such that x , y satisfy a quadratic equation. For instance, all positive integers x , y with y 0 ( mod 2 ) solving the Pythagorean equation x 2 + y 2 = z 2 satisfy | y sinh ( 1 / s ) - x | log log y log y . Conversely, for every s = 1 , 2 , there are infinitely many coprime integers x , y , such that | y sinh ( 1 / s ) - x | log log y log y and x 2 + y 2 = z 2 hold simultaneously for some integer z . A generalization to the approximation of h ( e 1 / s ) for rational functions h ( t ) ...

Page 1

Download Results (CSV)