The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

F -continuous graphs

Gary ChartrandElzbieta B. JarrettFarrokh SabaEbrahim SalehiPing Zhang — 2001

Czechoslovak Mathematical Journal

For a nontrivial connected graph F , the F -degree of a vertex v in a graph G is the number of copies of F in G containing v . A graph G is F -continuous (or F -degree continuous) if the F -degrees of every two adjacent vertices of G differ by at most 1. All P 3 -continuous graphs are determined. It is observed that if G is a nontrivial connected graph that is F -continuous for all nontrivial connected graphs F , then either G is regular or G is a path. In the case of a 2-connected graph F , however, there...

Page 1

Download Results (CSV)