The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let Gd be the semi-direct product of R*+ and Rd, d ≥ 1 and let us consider the product group Gd,N = Gd x RN, N ≥ 1. For a large class of probability measures μ on Gd,N, one prove that there exists ρ(μ) ∈ ]0,1] such that the sequence of finite measures
{(n(N+3)/2 / ρ(μ)n) μ*n}...
We prove an invariance principle for non-stationary random processes and establish a rate of convergence under a new type of mixing condition. The dependence is exponentially decaying in the gap between the past and the future and is controlled by an assumption on the characteristic function of the finite-dimensional increments of the process. The distinctive feature of the new mixing condition is that the dependence increases exponentially in the dimension of the increments. The proposed mixing...
Download Results (CSV)