The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Motivated by the well-posedness of birth-and-growth processes, a stochastic geometric differential equation and, hence, a stochastic geometric dynamical system are proposed. In fact, a birth-and-growth process can be rigorously modeled as a suitable combination, involving the Minkowski sum and the Aumann integral, of two very general set-valued processes representing nucleation and growth dynamics, respectively. The simplicity of the proposed geometric approach allows to avoid problems of boundary...
Motivated by the well-posedness of birth-and-growth processes, a stochastic geometric differential equation and, hence, a stochastic geometric dynamical system are proposed. In fact, a birth-and-growth process can be rigorously modeled as a suitable combination, involving the Minkowski sum and the Aumann integral, of two very general set-valued processes representing nucleation and growth dynamics, respectively. The simplicity of the proposed geometric approach allows to avoid problems of boundary...
Download Results (CSV)