The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let ℝ be the real line and let Homeo₊(ℝ) be the orientation preserving homeomorphism group of ℝ. Then a subgroup G of Homeo₊(ℝ) is called tightly transitive if there is some point x ∈ X such that the orbit Gx is dense in X and no subgroups H of G with |G:H| = ∞ have this property. In this paper, for each integer n > 1, we determine all the topological conjugation classes of tightly transitive subgroups G of Homeo₊(ℝ) which are isomorphic to ℤⁿ and have countably many nontransitive points.
We show that a metric space X admits no sensitive commutative group action if it satisfies the following two conditions: (1) X has property S, that is, for each ε > 0 there exists a cover of X which consists of finitely many connected sets with diameter less than ε; (2) X contains a free n-network, that is, there exists a nonempty open set W in X having no isolated point and n ∈ ℕ such that, for any nonempty open set U ⊂ W, there is a nonempty connected open set V ⊂ U such that the boundary ...
It is shown that each expansive group action on a Peano continuum having a free dendrite must have a ping-pong game, and has positive geometric entropy when the acting group is finitely generated. As a corollary, it is shown that each Peano continuum having a free dendrite admits no expansive nilpotent group actions.
Let ϕ:G → Homeo₊(ℝ) be an orientation preserving action of a discrete solvable group G on ℝ. In this paper, the topological transitivity of ϕ is investigated. In particular, the relations between the dynamical complexity of G and the algebraic structure of G are considered.
Download Results (CSV)