Abstract
We develop an almost orthogonal wavelet-type expansion in ℝ² which is adapted to polar coordinates. We start by defining a product Fourier-Hankel transform f̂ and proving a sampling formula for f such that f̂ is compactly supported. For general f, the sampling formula and a partition of unity lead to an identity of the form , in which each function and is concentrated near a certain annular sector, has compactly supported product Fourier-Hankel transform, and is smooth away from the...
This paper develops some Littlewood-Paley theory for Hermite expansions. The main result is that certain analogues of Triebel-Lizorkin spaces are well-defined in the context of Hermite expansions.
This paper describes expansions in terms of Hermite and Laguerre functions similar to the Frazier-Jawerth expansion in Fourier analysis. The wave packets occurring in these expansions are finite linear combinations of Hermite and Laguerre functions. The Shannon sampling formula played an important role in the derivation of the Frazier-Jawerth expansion. In this paper we use the Christoffel-Darboux formula for orthogonal polynomials instead. We obtain estimates on the decay of the Hermite and Laguerre...
Download Results (CSV)