The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let m ≥ 2 be an integer. We show that ZF + “Every countable set of m-element sets has an infinite partial choice function” is not strong enough to prove that every countable set of m-element sets has a choice function, answering an open question from . (Actually a slightly stronger result is obtained.) The independence result in the case where m = p is prime is obtained by way of a permutation (Fraenkel-Mostowski) model of ZFA, in which the set of atoms (urelements) has the structure of a vector...
A definition of finiteness is a set-theoretical property of a set that, if the Axiom of Choice (AC) is assumed, is equivalent to stating that the set is finite; several such definitions have been studied over the years. In this article we introduce a framework for generating definitions of finiteness in a systematical way: basic definitions are obtained from properties of certain classes of binary relations, and further definitions are obtained from the basic ones by closing them under subsets...
Download Results (CSV)