Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Solutions of x³+y³+z³=nxyz

Erik Dofs — 1995

Acta Arithmetica

The diophantine equation (1) x³ + y³ + z³ = nxyz has only trivial solutions for three (probably) infinite sets of n-values and some other n-values ([7], Chs. 10, 15, [3], [2]). The main set is characterized by: n²+3n+9 is a prime number, n-3 contains no prime factor ≡ 1 (mod 3) and n ≠ - 1,5. Conversely, equation (1) is known to have non-trivial solutions for infinitely many n-values. These solutions were given either as "1 chains" ([7], Ch. 30, [4], [6]), as recursive...

Page 1

Download Results (CSV)