The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In the framework of ZF (Zermelo-Fraenkel set theory without the Axiom of Choice) we provide topological and Boolean-algebraic characterizations of the statements " is countably compact" and " is compact"
We show that:
(1) It is provable in ZF (i.e., Zermelo-Fraenkel set theory minus the Axiom of Choice AC) that every compact scattered T₂ topological space is zero-dimensional.
(2) If every countable union of countable sets of reals is countable, then a countable compact T₂ space is scattered iff it is metrizable.
(3) If the real line ℝ can be expressed as a well-ordered union of well-orderable sets, then every countable compact zero-dimensional T₂ space...
Download Results (CSV)