In the framework of ZF (Zermelo-Fraenkel set theory without the Axiom of Choice) we provide topological and Boolean-algebraic characterizations of the statements " is countably compact" and " is compact"
We show that:
(1) It is provable in ZF (i.e., Zermelo-Fraenkel set theory minus the Axiom of Choice AC) that every compact scattered T₂ topological space is zero-dimensional.
(2) If every countable union of countable sets of reals is countable, then a countable compact T₂ space is scattered iff it is metrizable.
(3) If the real line ℝ can be expressed as a well-ordered union of well-orderable sets, then every countable compact zero-dimensional T₂ space...
Download Results (CSV)