The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

On maximizing measures of homeomorphisms on compact manifolds

Fábio Armando TalSalvador Addas-Zanata — 2008

Fundamenta Mathematicae

We prove that given a compact n-dimensional connected Riemannian manifold X and a continuous function g: X → ℝ, there exists a dense subset of the space of homeomorphisms of X such that for all T in this subset, the integral X g d μ , considered as a function on the space of all T-invariant Borel probability measures μ, attains its maximum on a measure supported on a periodic orbit.

Density of the set of symbolic dynamics with all ergodic measures supported on periodic orbits

Let K be the Cantor set. We prove that arbitrarily close to a homeomorphism T: K → K there exists a homeomorphism T̃: K → K such that the ω-limit of every orbit is a periodic orbit. We also prove that arbitrarily close to an endomorphism T: K → K there exists an endomorphism T̃: K → K with every orbit finally periodic.

Page 1

Download Results (CSV)