Currently displaying 1 – 15 of 15

Showing per page

Order by Relevance | Title | Year of publication

A theorem on isotropic spaces

Félix Cabello Sánchez — 1999

Studia Mathematica

Let X be a normed space and G F ( X ) the group of all linear surjective isometries of X that are finite-dimensional perturbations of the identity. We prove that if G F ( X ) acts transitively on the unit sphere then X must be an inner product space.

The group of automorphisms of L is algebraically reflexive

Félix Cabello Sánchez — 2004

Studia Mathematica

We study the reflexivity of the automorphism (and the isometry) group of the Banach algebras L ( μ ) for various measures μ. We prove that if μ is a non-atomic σ-finite measure, then the automorphism group (or the isometry group) of L ( μ ) is [algebraically] reflexive if and only if L ( μ ) is *-isomorphic to L [ 0 , 1 ] . For purely atomic measures, we show that the group of automorphisms (or isometries) of ( Γ ) is reflexive if and only if Γ has non-measurable cardinal. So, for most “practical” purposes, the automorphism group...

On continuous surjections from Cantor set.

Félix Cabello Sánchez — 2004

Extracta Mathematicae

It is a famous result of Alexandroff and Urysohn that every compact metric space is a continuous image of a Cantor set ∆. In this short note we complement this result by showing that a certain uniqueness property holds. Namely, if (K,d) is a compact metric space and f and g are two continuous mappings from ∆ onto K, the, for every e > 0 there exists a homeomorphism phi of ∆ such that d(g(x), f(phi(x))) < e for all x∆.

Quasi-homomorphisms

Félix Cabello Sánchez — 2003

Fundamenta Mathematicae

We study the stability of homomorphisms between topological (abelian) groups. Inspired by the "singular" case in the stability of Cauchy's equation and the technique of quasi-linear maps we introduce quasi-homomorphisms between topological groups, that is, maps ω: 𝒢 → ℋ such that ω(0) = 0 and ω(x+y) - ω(x) - ω(y) → 0 (in ℋ) as x,y → 0 in 𝒢. The basic question here is whether ω is approximable by a true homomorphism a in the sense that ω(x)-a(x) → 0 in ℋ as x →...

Report on twisted sums of Banach spaces.

Félix CabelloJesús M. Fernández Castillo — 1996

Extracta Mathematicae

This note is to report some of the advances obtained as a follow-up of the book [2] on the topic of twisted sums of Banach spaces. Since this announcement is no longer enough to contain the theory being developed, we submit the interested reader to [2] and to [1], where full details and proofs shall appear.

Reflexivity of the isometry group of some classical spaces.

Félix Cabello SánchezLajos Molnár — 2002

Revista Matemática Iberoamericana

We investigate the reflexivity of the isometry group and the automorphism group of some important metric linear spaces and a1gebras. The paper consists of the following sections: 1. Preliminaries. 2. Sequence spaces. 3. Spaces of measurable functions. Hardy spaces. 5. Banach algebras of holomorphic functions. 6. Fréchet algebras of holomorphic functions. 7. Spaces of continuous functions.

Extension of multilinear operators on Banach spaces.

Félix Cabello SánchezR. GarcíaI. Villanueva — 2000

Extracta Mathematicae

These notes deal with the extension of multilinear operators on Banach spaces. The organization of the paper is as follows. In the first section we study the extension of the product on a Banach algebra to the bidual and some related structures including modules and derivations. Tha approach is elementary and uses the classical Arens' technique. Actually most of the results of section 1 can be easily derived from section 2. In section 2 we consider the problem of extending multilinear forms on a...

On ultrapowers of Banach spaces of type

We prove that no ultraproduct of Banach spaces via a countably incomplete ultrafilter can contain c₀ complemented. This shows that a "result" widely used in the theory of ultraproducts is wrong. We then amend a number of results whose proofs have been infected by that statement. In particular we provide proofs for the following statements: (i) All M-spaces, in particular all C(K)-spaces, have ultrapowers isomorphic to ultrapowers of c₀, as also do all their complemented subspaces isomorphic to their...

Page 1

Download Results (CSV)