We find representations for the automorphisms, derivations and multipliers of the Fréchet algebra of locally integrable functions on the half-line . We show, among other things, that every automorphism θ of is of the form , where D is a derivation, X is the operator of multiplication by coordinate, λ is a complex number, a > 0, and is the dilation operator (, ). It is also shown that the automorphism group is a topological group with the topology of uniform convergence on bounded...
We introduce two new notions of amenability for a Banach algebra A. The algebra A is n-weakly amenable (for n ∈ ℕ) if the first continuous cohomology group of A with coefficients in the n th dual space is zero; i.e., . Further, A is permanently weakly amenable if A is n-weakly amenable for each n ∈ ℕ. We begin by examining the relations between m-weak amenability and n-weak amenability for distinct m,n ∈ ℕ. We then examine when Banach algebras in various classes are n-weakly amenable; we study...
Download Results (CSV)