The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

A simple formula showing L¹ is a maximal overspace for two-dimensional real spaces

B. L. ChalmersF. T. Metcalf — 1992

Annales Polonici Mathematici

It follows easily from a result of Lindenstrauss that, for any real twodimensional subspace v of L¹, the relative projection constant λ(v;L¹) of v equals its (absolute) projection constant λ ( v ) = s u p X λ ( v ; X ) . The purpose of this paper is to recapture this result by exhibiting a simple formula for a subspace V contained in L ( ν ) and isometric to v and a projection P from C ⊕ V onto V such that P = P , where P₁ is a minimal projection from L¹(ν) onto v. Specifically, if P = i = 1 2 U i v i , then P = i = 1 2 u i V i , where d V i = 2 v i d ν and d U i = - 2 u i d ν .

Page 1

Download Results (CSV)