Mild solutions of quantum stochastic differential equations.
Quantum detailed balance conditions are often formulated as relationships between the generator of a quantum Markov semigroup and the generator of a dual semigroup with respect to a certain scalar product defined by an invariant state. In this paper we survey some results describing the structure of norm continuous quantum Markov semigroups on ℬ(h) satisfying a quantum detailed balance condition when the duality is defined by means of pre-scalar products on ℬ(h) of the form (s ∈ [0,1]) in order...
We give a necessary and sufficient criterion for a normal CP-map on a von Neumann algebra to admit a restriction to a maximal commutative subalgebra. We apply this result to give a far reaching generalization of Rebolledo's sufficient criterion for the Lindblad generator of a Markov semigroup on ℬ(G).
We classify generators of quantum Markov semigroups on (h), with h finite-dimensional and with a faithful normal invariant state ρ satisfying the standard quantum detailed balance condition with an anti-unitary time reversal θ commuting with ρ, namely for all x,y ∈ and t ≥ 0. Our results also show that it is possible to find a standard form for the operators in the Lindblad representation of the generators extending the standard form of generators of quantum Markov semigroups satisfying the usual...
Page 1