The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The aim of this paper is to consider the ringswhich can be graded by completely simple semigroups. We show that each G-graded ring has an orthonormal basis, where G is a completely simple semigroup. We prove that if I is a complete homogeneous ideal of a G-graded ring R, then R/I is a G-graded ring.We deduce a characterization of the maximal ideals of a G-graded ring which are homogeneous. We also prove that if R is a Noetherian graded ring, then each summand of it is also a Noetherian module..
Download Results (CSV)