A zero-sum stochastic differential game problem on infinite horizon with continuous and impulse controls is studied. We obtain the existence of the value of the game and characterize it as the unique viscosity solution of the associated system of quasi-variational inequalities. We also obtain a verification theorem which provides an optimal strategy of the game.
A zero-sum stochastic differential game
problem on infinite horizon with continuous and impulse controls is
studied. We obtain the existence of the value of the game and
characterize it as the unique viscosity solution of the associated
system of quasi-variational inequalities. We also obtain a
verification theorem which provides an optimal strategy of the game.
This paper is concerned with the sampled-data based adaptive linear quadratic (LQ) control of hybrid systems with both unmeasurable Markov jump processes and stochastic noises. By the least matching error estimation algorithm, parameter estimates are presented. By a double-step (DS) sampling approach and the certainty equivalence principle, a sampled-data based adaptive LQ control is designed. The DS-approach is characterized by a comparatively large estimation step for parameter estimation and...
This paper is concerned with the sampled-data based adaptive
linear quadratic (LQ) control of hybrid systems with both
unmeasurable Markov jump processes and stochastic noises.
By the least matching error estimation algorithm, parameter estimates
are presented. By a double-step (DS) sampling approach and the certainty
equivalence principle, a sampled-data based adaptive LQ control is
designed. The DS-approach is characterized by a comparatively large
estimation step for parameter estimation and...
Download Results (CSV)