The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper we present a numerical study of the hyperbolic model for convection-diffusion transport problems that has been recently proposed by the authors. This model avoids the infinite speed paradox, inherent to the standard parabolic model and introduces a new parameter called relaxation time. This parameter plays the role of an “inertia” for the movement of the pollutant. The analysis presented herein is twofold: first, we perform an accurate study of the 1D steady-state equations and its...
Download Results (CSV)