The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Consider the class of functional equations
g[F(x,y)] = H[g(x),g(y)],
where g: E --> X, f: E x E --> E, H: X x X --> X, E is a set and (X,d) is a complete metric space. In this paper we prove that, under suitable hypotheses on F, H and ∂(x,y), the existence of a solution of the functional inequality
d(f[F(x,y)],H[f(x),f(y)]) ≤ ∂(x,y),
implies the existence of a solution of the above equation.
In this note we solve the inhomogeneous Cauchy functional equation f(x+y) - f(x) - f(y) = d(x,y), x,y belonging to R, in the case where d is bounded.
Download Results (CSV)