On présente des résultats classiques et récents dans l’étude de la limite de champ moyen de systèmes de particules stochastiques en interaction. Ces derniers résultats visent à couvrir une plus grande variété de modèles et obtenir des estimations précises de la convergence et sont mises en lien avec le comportement en temps grand des systèmes considérés.
We consider the approximation of a mean field stochastic process by a large interacting particle system. We derive non-asymptotic large deviation bounds
measuring the concentration of the empirical measure of the paths of the particles around the law of the process. The method is based on a coupling argument, strong integrability estimates on the paths in Hölder norm, and a general concentration result for the empirical measure of identically distributed independent paths.
For a stochastic process with state space some Polish space, this paper gives sufficient conditions on the initial and conditional distributions for the joint law to satisfy Gaussian concentration inequalities and transportation inequalities. In the case of the Euclidean space , there are sufficient conditions for the joint law to satisfy a logarithmic Sobolev inequality. In several cases, the constants obtained are of optimal order of growth with respect to the number of random variables, or are...
We consider a Vlasov-Fokker-Planck equation governing the evolution
of the density of interacting and diffusive matter in the space of
positions and velocities.
We use a probabilistic interpretation to obtain convergence towards
equilibrium in Wasserstein distance with an explicit exponential
rate. We also prove a propagation of chaos property for an
associated particle system, and give rates on the approximation of
the solution by the particle system. Finally, a transportation
inequality...
Download Results (CSV)