The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Analysis of an Asymptotic Preserving Scheme for Relaxation Systems

Francis FilbetAmélie Rambaud — 2013

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider an asymptotic preserving numerical scheme initially proposed by F. Filbet and S. Jin [229 (2010)] and G. Dimarco and L. Pareschi [49 (2011) 2057–2077] in the context of nonlinear and stiff kinetic equations. Here, we propose a convergence analysis of such a scheme for the approximation of a system of transport equations with a nonlinear source term, for which the asymptotic limit is given by a conservation law. We investigate the convergence of the approximate solution ( ...

A numerical scheme for the quantum Boltzmann equation with stiff collision terms

Francis FilbetJingwei HuShi Jin — 2012

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Numerically solving the Boltzmann kinetic equations with the small Knudsen number is challenging due to the stiff nonlinear collision terms. A class of asymptotic-preserving schemes was introduced in [F. Filbet and S. Jin,J. Comput. Phys. 229 (2010) 7625–7648] to handle this kind of problems. The idea is to penalize the stiff collision term by a BGK type operator. This method, however, encounters its own difficulty when applied to the quantum Boltzmann equation. To define the quantum Maxwellian...

A numerical scheme for the quantum Boltzmann equation with stiff collision terms

Francis FilbetJingwei HuShi Jin — 2011

ESAIM: Mathematical Modelling and Numerical Analysis

Numerically solving the Boltzmann kinetic equations with the small Knudsen number is challenging due to the stiff nonlinear collision terms. A class of asymptotic-preserving schemes was introduced in [F. Filbet and S. Jin,J. Comput. Phys. (2010) 7625–7648] to handle this kind of problems. The idea is to penalize the stiff collision term by a BGK type operator. This method, however, encounters its own difficulty when applied to the quantum Boltzmann...

Page 1

Download Results (CSV)