Almost everywhere convergence and boundedness of Cesàro-α ergodic averages in L-spaces.
Let (X, μ) be a σ-finite measure space and let τ be an ergodic invertible measure preserving transformation. We study the a.e. convergence of the Cesàro-α ergodic averages associated with τ and the boundedness of the corresponding maximal operator in the setting of L(wdμ) spaces.