Examples of Free Involutions on Manifolds.
We study the relation between the concept of spine and the representation of orientable bordered 3-manifolds by Heegaard diagrams. As a consequence, we show that composing invertible non-amphicheiral knots yields examples of topologically different knot manifolds with isomorphic spines. These results are related to some questions listed in [9], [11] and recover the main theorem of [10] as a corollary. Finally, an application concerning knot manifolds of composite knots with h prime factors completes...
We study self-homotopy equivalences and diffeomorphisms of the (n+1)-dimensional manifold X= #p(S1 x Sn) for any n ≥ 3. Then we completely determine the group of pseudo-isotopy classes of homeomorphisms of X and extend to dimension n well-known theorems due to F. Laudenbach and V. Poenaru (1972,1973), and J. M. Montesinos (1979).
Given a closed 4-manifold M, let M* be the simply-connected 4-manifold obtained from M by killing the fundamental group. We study the relation between the intersection forms λ and λ. Finally some topological consequences and examples are described.
This is a survey of results and open problems on compact 3-manifolds which admit spines corresponding to cyclic presentations of groups. We also discuss questions concerning spines of knot manifolds and regular neighborhoods of homotopically PL embedded compacta in 3-manifolds.
Page 1