Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Interpolation theorem for a continuous function on orientations of a simple graph

Fu Ji ZhangZhibo Chen — 1998

Czechoslovak Mathematical Journal

Let G be a simple graph. A function f from the set of orientations of G to the set of non-negative integers is called a continuous function on orientations of G if, for any two orientations O 1 and O 2 of G , | f ( O 1 ) - f ( O 2 ) | 1 whenever O 1 and O 2 differ in the orientation of exactly one edge of G . We show that any continuous function on orientations of a simple graph G has the interpolation property as follows: If there are two orientations O 1 and O 2 of G with f ( O 1 ) = p and f ( O 2 ) = q , where p < q , then for any integer k such that p < k < q , there are...

Limit points of eigenvalues of (di)graphs

Fu Ji ZhangZhibo Chen — 2006

Czechoslovak Mathematical Journal

The study on limit points of eigenvalues of undirected graphs was initiated by A. J. Hoffman in 1972. Now we extend the study to digraphs. We prove: 1. Every real number is a limit point of eigenvalues of graphs. Every complex number is a limit point of eigenvalues of digraphs. 2. For a digraph D , the set of limit points of eigenvalues of iterated subdivision digraphs of D is the unit circle in the complex plane if and only if D has a directed cycle. 3. Every limit point of eigenvalues of a set...

Page 1

Download Results (CSV)