The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let be a simple graph. A function from the set of orientations of to the set of non-negative integers is called a continuous function on orientations of if, for any two orientations and of , whenever and differ in the orientation of exactly one edge of . We show that any continuous function on orientations of a simple graph has the interpolation property as follows: If there are two orientations and of with and , where , then for any integer such that , there are...
The study on limit points of eigenvalues of undirected graphs was initiated by A. J. Hoffman in 1972. Now we extend the study to digraphs. We prove: 1. Every real number is a limit point of eigenvalues of graphs. Every complex number is a limit point of eigenvalues of digraphs. 2. For a digraph , the set of limit points of eigenvalues of iterated subdivision digraphs of is the unit circle in the complex plane if and only if has a directed cycle. 3. Every limit point of eigenvalues of a set...
Download Results (CSV)