The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In the study of surfaces in 3-manifolds, the so-called ?cut-and-paste? of surfaces is frequently used. In this paper, we generalize this method, in a sense, to singular-surfaces, and as an application, we prove that two collections of singular-disks in the 3-space R3 which span the same trivial link are link-homotopic in the upper-half 4-space R3 [0,8) keeping the link fixed. Throughout the paper, we work in the piecewise linear category, consisting of simplicial complexes and piecewise linear maps....
Download Results (CSV)