The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We consider sequences of linear operators Uₙ with a localization property. It is proved that for any set E of measure zero there exists a set G for which diverges at each point x ∈ E. This result is a generalization of analogous theorems known for the Fourier sum operators with respect to different orthogonal systems.
Let be the family of open rectangles in the plane ℝ² with a side of angle s to the x-axis. We say that a set S of directions is an R-set if there exists a function f ∈ L¹(ℝ²) such that the basis differentiates the integral of f if s ∉ S, and almost everywhere if s ∈ S. If the condition holds on a set of positive measure (instead of a.e.) we say that S is a WR-set. It is proved that S is an R-set (resp. a WR-set) if and only if it is a (resp. a ).
Download Results (CSV)