Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

A subsequence characterization of sequences spanning isomorphically polyhedral Banach spaces

G. Androulakis — 1998

Studia Mathematica

Let (x_n) be a sequence in a Banach space X which does not converge in norm, and let E be an isomorphically precisely norming set for X such that (*) ∑_n |x*(x_{n+1} - x_n)| < ∞, ∀x* ∈ E. Then there exists a subsequence of (x_n) which spans an isomorphically polyhedral Banach space. It follows immediately from results of V. Fonf that the converse is also true: If Y is a separable isomorphically polyhedral Banach space then there exists a normalized M-basis (x_n) which spans Y and there exists...

The Banach space S is complementably minimal and subsequentially prime

G. AndroulakisT. Schlumprecht — 2003

Studia Mathematica

We first include a result of the second author showing that the Banach space S is complementably minimal. We then show that every block sequence of the unit vector basis of S has a subsequence which spans a space isomorphic to its square. By the Pełczyński decomposition method it follows that every basic sequence in S which spans a space complemented in S has a subsequence which spans a space isomorphic to S (i.e. S is a subsequentially prime space).

Page 1

Download Results (CSV)