The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
This paper gives a structure theorem for the class of countable 1-transitive coloured linear orderings for a countably infinite colour set, concluding the work begun in [1]. There we gave a complete classification of these orders for finite colour sets, of which there are ℵ₁. For infinite colour sets, the details are considerably more complicated, but many features from [1] occur here too, in more marked form, principally the use (now essential it seems) of coding trees, as a means of describing...
We answer several questions of D. Monk by showing that every maximal family of pairwise incomparable elements of 𝒫(ω)/fin has size continuum, while it is consistent with the negation of the Continuum Hypothesis that there are maximal subtrees of both 𝒫(ω) and 𝒫(ω)/fin of size ω₁.
Download Results (CSV)