Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Some multiplier theorems on the sphere.

R. O. GandulfoG. Gigante — 2000

Collectanea Mathematica

The n-dimensional sphere, E, can be seen as the quotient between the group of rotations of R n+1 and the subgroup of all the rotations that fix one point. Using representation theory, one can see that any operator on Lp (Sigma n) that commutes with the action of the group of rotations (called multiplier) may be associated with a sequence of complex numbers. We prove that, if a certain discrete derivative of a given sequence represents a bounded multiplier on LP (E 1), then the given sequence represents...

Page 1

Download Results (CSV)