The Weyl criterion for uniform distribution of a sequence has an especially simple form in compact abelian groups. The authors use this and the structure of compact monothetic groups and semigroups to generalise the convergence, under certain compactness conditions, of the operator averages: where P is a projection associated with the eigenvalue one of T.
An exposition is given of recent work of the author and others on the differential calculi that occur in the setting of compact quantum groups. The principal topics covered are twisted graded traces, an extension of Connes' cyclic cohomology, invariant linear functionals on covariant calculi and the Hodge, Dirac and Laplace operators in this setting. Some new results extending the classical de Rham theorem and Poincaré duality are also discussed.
Download Results (CSV)