The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
An ordered semigroup S is said to be principally ordered if, for every x ∈ S there exists x* = max{y ∈ S | xyx ⩽ x}. Here we investigate those principally ordered regular semigroups that are pointed in the sense that the classes modulo Green's relations ℒ,ℛ,𝒟 have biggest elements which are idempotent. Such a semigroup is necessarily a semiband. In particular we describe the subalgebra of (S;*) generated by a pair of comparable idempotents that are 𝒟-related. We also prove that those 𝒟-classes...
Download Results (CSV)