The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let be a prime. Let such that , let be characters of conductor not divided by and let be the Teichmüller character. For all between and , for all between and , set
Let and let be a prime of the valuation ring of . For all let be the Iwasawa series associated to and its reduction modulo . Finally let be an algebraic closure of . Our main result is that if the characters are all distinct modulo , then and the series are linearly...
Download Results (CSV)