Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

On the linear independence of p -adic L -functions modulo p

Bruno AnglèsGabriele Ranieri — 2010

Annales de l’institut Fourier

Let p 3 be a prime. Let n such that n 1 , let χ 1 , ... , χ n be characters of conductor d not divided by p and let ω be the Teichmüller character. For all i between 1 and n , for all j between 0 and ( p - 3 ) / 2 , set θ i , j = χ i ω 2 j + 1 if χ i is odd ; χ i ω 2 j if χ i is even . Let K = p ( χ 1 , ... , χ n ) and let π be a prime of the valuation ring 𝒪 K of K . For all i , j let f ( T , θ i , j ) be the Iwasawa series associated to θ i , j and f ( T , θ i , j ) ¯ its reduction modulo ( π ) . Finally let 𝔽 p ¯ be an algebraic closure of 𝔽 p . Our main result is that if the characters χ i are all distinct modulo ( π ) , then 1 and the series f ( T , θ i , j ) ¯ are linearly...

Page 1

Download Results (CSV)