The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

On the linear independence of p -adic L -functions modulo p

Bruno AnglèsGabriele Ranieri — 2010

Annales de l’institut Fourier

Let p 3 be a prime. Let n such that n 1 , let χ 1 , ... , χ n be characters of conductor d not divided by p and let ω be the Teichmüller character. For all i between 1 and n , for all j between 0 and ( p - 3 ) / 2 , set θ i , j = χ i ω 2 j + 1 if χ i is odd ; χ i ω 2 j if χ i is even . Let K = p ( χ 1 , ... , χ n ) and let π be a prime of the valuation ring 𝒪 K of K . For all i , j let f ( T , θ i , j ) be the Iwasawa series associated to θ i , j and f ( T , θ i , j ) ¯ its reduction modulo ( π ) . Finally let 𝔽 p ¯ be an algebraic closure of 𝔽 p . Our main result is that if the characters χ i are all distinct modulo ( π ) , then 1 and the series f ( T , θ i , j ) ¯ are linearly...

Page 1

Download Results (CSV)