The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let I be an interval, 0 < λ < 1 be a fixed constant and A(x,y) = λx + (1-λ)y, x,y ∈ I, be the weighted arithmetic mean on I. A pair of strict means M and N is complementary with respect to A if A(M(x,y),N(x,y)) = A(x,y) for all x, y ∈ I. For such a pair we give results on the functional equation f(M(x,y)) = f(N(x,y)). The equation is motivated by and applied to the Matkowski-Sutô problem on complementary weighted quasi-arithmetic means M and N.
Download Results (CSV)