The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 11 of 11

Showing per page

Order by Relevance | Title | Year of publication

A quantitative aspect of non-unique factorizations: the Narkiewicz constants III

Weidong GaoJiangtao PengQinghai Zhong — 2013

Acta Arithmetica

Let K be an algebraic number field with non-trivial class group G and K be its ring of integers. For k ∈ ℕ and some real x ≥ 1, let F k ( x ) denote the number of non-zero principal ideals a K with norm bounded by x such that a has at most k distinct factorizations into irreducible elements. It is well known that F k ( x ) behaves for x → ∞ asymptotically like x ( l o g x ) 1 - 1 / | G | ( l o g l o g x ) k ( G ) . We prove, among other results, that ( C n C n ) = n + n for all integers n₁,n₂ with 1 < n₁|n₂.

A quantitative aspect of non-unique factorizations: the Narkiewicz constants II

Weidong GaoYuanlin LiJiangtao Peng — 2011

Colloquium Mathematicae

Let K be an algebraic number field with non-trivial class group G and K be its ring of integers. For k ∈ ℕ and some real x ≥ 1, let F k ( x ) denote the number of non-zero principal ideals a K with norm bounded by x such that a has at most k distinct factorizations into irreducible elements. It is well known that F k ( x ) behaves, for x → ∞, asymptotically like x ( l o g x ) 1 / | G | - 1 ( l o g l o g x ) k ( G ) . In this article, it is proved that for every prime p, ( C p C p ) = 2 p , and it is also proved that ( C m p C m p ) = 2 m p if ( C m C m ) = 2 m and m is large enough. In particular, it is shown that for...

On additive bases II

Weidong GaoDongchun HanGuoyou QianYongke QuHanbin Zhang — 2015

Acta Arithmetica

Let G be an additive finite abelian group, and let S be a sequence over G. We say that S is regular if for every proper subgroup H ⊆ G, S contains at most |H|-1 terms from H. Let ₀(G) be the smallest integer t such that every regular sequence S over G of length |S| ≥ t forms an additive basis of G, i.e., every element of G can be expressed as the sum over a nonempty subsequence of S. The constant ₀(G) has been determined previously only for the elementary abelian groups. In this paper, we determine...

On sequences over a finite abelian group with zero-sum subsequences of forbidden lengths

Weidong GaoYuanlin LiPingping ZhaoJujuan Zhuang — 2016

Colloquium Mathematicae

Let G be an additive finite abelian group. For every positive integer ℓ, let d i s c ( G ) be the smallest positive integer t such that each sequence S over G of length |S| ≥ t has a nonempty zero-sum subsequence of length not equal to ℓ. In this paper, we determine d i s c ( G ) for certain finite groups, including cyclic groups, the groups G = C C 2 m and elementary abelian 2-groups. Following Girard, we define disc(G) as the smallest positive integer t such that every sequence S over G with |S| ≥ t has nonempty zero-sum subsequences...

Page 1

Download Results (CSV)