The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Hamiltonian-colored powers of strong digraphs

Garry JohnsRyan JonesKyle KolasinskiPing Zhang — 2012

Discussiones Mathematicae Graph Theory

For a strong oriented graph D of order n and diameter d and an integer k with 1 ≤ k ≤ d, the kth power D k of D is that digraph having vertex set V(D) with the property that (u, v) is an arc of D k if the directed distance d D ( u , v ) from u to v in D is at most k. For every strong digraph D of order n ≥ 2 and every integer k ≥ ⌈n/2⌉, the digraph D k is Hamiltonian and the lower bound ⌈n/2⌉ is sharp. The digraph D k is distance-colored if each arc (u, v) of D k is assigned the color i where i = d D ( u , v ) . The digraph D k is Hamiltonian-colored...

Rainbow connection in graphs

Gary ChartrandGarry L. JohnsKathleen A. McKeonPing Zhang — 2008

Mathematica Bohemica

Let G be a nontrivial connected graph on which is defined a coloring c E ( G ) { 1 , 2 , ... , k } , k , of the edges of G , where adjacent edges may be colored the same. A path P in G is a rainbow path if no two edges of P are colored the same. The graph G is rainbow-connected if G contains a rainbow u - v path for every two vertices u and v of G . The minimum k for which there exists such a k -edge coloring is the rainbow connection number r c ( G ) of G . If for every pair u , v of distinct vertices, G contains a rainbow u - v geodesic, then G is...

Page 1

Download Results (CSV)