The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 20 of 51

Showing per page

Order by Relevance | Title | Year of publication

On graphs with a unique minimum hull set

Gary ChartrandPing Zhang — 2001

Discussiones Mathematicae Graph Theory

We show that for every integer k ≥ 2 and every k graphs G₁,G₂,...,Gₖ, there exists a hull graph with k hull vertices v₁,v₂,...,vₖ such that link L ( v i ) = G i for 1 ≤ i ≤ k. Moreover, every pair a, b of integers with 2 ≤ a ≤ b is realizable as the hull number and geodetic number (or upper geodetic number) of a hull graph. We also show that every pair a,b of integers with a ≥ 2 and b ≥ 0 is realizable as the hull number and forcing geodetic number of a hull graph.

The forcing geodetic number of a graph

Gary ChartrandPing Zhang — 1999

Discussiones Mathematicae Graph Theory

For two vertices u and v of a graph G, the set I(u, v) consists of all vertices lying on some u-v geodesic in G. If S is a set of vertices of G, then I(S) is the union of all sets I(u,v) for u, v ∈ S. A set S is a geodetic set if I(S) = V(G). A minimum geodetic set is a geodetic set of minimum cardinality and this cardinality is the geodetic number g(G). A subset T of a minimum geodetic set S is called a forcing subset for S if S is the unique minimum geodetic set containing T. The forcing geodetic...

Extreme geodesic graphs

Gary ChartrandPing Zhang — 2002

Czechoslovak Mathematical Journal

For two vertices u and v of a graph G , the closed interval I [ u , v ] consists of u , v , and all vertices lying in some u -- v geodesic of G , while for S V ( G ) , the set I [ S ] is the union of all sets I [ u , v ] for u , v S . A set S of vertices of G for which I [ S ] = V ( G ) is a geodetic set for G , and the minimum cardinality of a geodetic set is the geodetic number g ( G ) . A vertex v in G is an extreme vertex if the subgraph induced by its neighborhood is complete. The number of extreme vertices in G is its extreme order e x ( G ) . A graph G is an extreme geodesic...

The forcing convexity number of a graph

Gary ChartrandPing Zhang — 2001

Czechoslovak Mathematical Journal

For two vertices u and v of a connected graph G , the set I ( u , v ) consists of all those vertices lying on a u v geodesic in G . For a set S of vertices of G , the union of all sets I ( u , v ) for u , v S is denoted by I ( S ) . A set S is a convex set if I ( S ) = S . The convexity number c o n ( G ) of G is the maximum cardinality of a proper convex set of G . A convex set S in G with | S | = c o n ( G ) is called a maximum convex set. A subset T of a maximum convex set S of a connected graph G is called a forcing subset for S if S is the unique maximum convex set...

The forcing dimension of a graph

Gary ChartrandPing Zhang — 2001

Mathematica Bohemica

For an ordered set W = { w 1 , w 2 , , w k } of vertices and a vertex v in a connected graph G , the (metric) representation of v with respect to W is the k -vector r ( v | W ) = ( d ( v , w 1 ) , d ( v , w 2 ) , , d ( v , w k ) ), where d ( x , y ) represents the distance between the vertices x and y . The set W is a resolving set for G if distinct vertices of G have distinct representations. A resolving set of minimum cardinality is a basis for G and the number of vertices in a basis is its (metric) dimension dim ( G ) . For a basis W of G , a subset S of W is called a forcing subset of W if W is...

H -convex graphs

Gary ChartrandPing Zhang — 2001

Mathematica Bohemica

For two vertices u and v in a connected graph G , the set I ( u , v ) consists of all those vertices lying on a u - v geodesic in G . For a set S of vertices of G , the union of all sets I ( u , v ) for u , v S is denoted by I ( S ) . A set S is convex if I ( S ) = S . The convexity number c o n ( G ) is the maximum cardinality of a proper convex set in G . A convex set S is maximum if | S | = c o n ( G ) . The cardinality of a maximum convex set in a graph G is the convexity number of G . For a nontrivial connected graph H , a connected graph G is an H -convex graph if G contains...

Geodetic sets in graphs

Gary ChartrandFrank HararyPing Zhang — 2000

Discussiones Mathematicae Graph Theory

For two vertices u and v of a graph G, the closed interval I[u,v] consists of u, v, and all vertices lying in some u-v geodesic in G. If S is a set of vertices of G, then I[S] is the union of all sets I[u,v] for u, v ∈ S. If I[S] = V(G), then S is a geodetic set for G. The geodetic number g(G) is the minimum cardinality of a geodetic set. A set S of vertices in a graph G is uniform if the distance between every two distinct vertices of S is the same fixed number. A geodetic set is essential if for...

Distance defined by spanning trees in graphs

Gary ChartrandLadislav NebeskýPing Zhang — 2007

Discussiones Mathematicae Graph Theory

For a spanning tree T in a nontrivial connected graph G and for vertices u and v in G, there exists a unique u-v path u = u₀, u₁, u₂,..., uₖ = v in T. A u-v T-path in G is a u- v path u = v₀, v₁,...,vₗ = v in G that is a subsequence of the sequence u = u₀, u₁, u₂,..., uₖ = v. A u-v T-path of minimum length is a u-v T-geodesic in G. The T-distance d G | T ( u , v ) from u to v in G is the length of a u-v T-geodesic. Let geo(G) and geo(G|T) be the set of geodesics and the set of T-geodesics respectively in G. Necessary...

Radio k-colorings of paths

Gary ChartrandLadislav NebeskýPing Zhang — 2004

Discussiones Mathematicae Graph Theory

For a connected graph G of diameter d and an integer k with 1 ≤ k ≤ d, a radio k-coloring of G is an assignment c of colors (positive integers) to the vertices of G such that d(u,v) + |c(u)- c(v)| ≥ 1 + k for every two distinct vertices u and v of G, where d(u,v) is the distance between u and v. The value rcₖ(c) of a radio k-coloring c of G is the maximum color assigned to a vertex of G. The radio k-chromatic number rcₖ(G) of G is the minimum value of rcₖ(c) taken over all radio k-colorings c of...

Kaleidoscopic Colorings of Graphs

Gary ChartrandSean EnglishPing Zhang — 2017

Discussiones Mathematicae Graph Theory

For an r-regular graph G, let c : E(G) → [k] = 1, 2, . . . , k, k ≥ 3, be an edge coloring of G, where every vertex of G is incident with at least one edge of each color. For a vertex v of G, the multiset-color cm(v) of v is defined as the ordered k-tuple (a1, a2, . . . , ak) or a1a2 … ak, where ai (1 ≤ i ≤ k) is the number of edges in G colored i that are incident with v. The edge coloring c is called k-kaleidoscopic if cm(u) ≠ cm(v) for every two distinct vertices u and v of G. A regular graph...

Page 1 Next

Download Results (CSV)